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Abstract

While quantum walks are faster than their classical counterparts in searching a node,
the transient nature of quantum walks leads to a non-zero failure rate. By classically
resetting the walk, it has been shown that the walk can be made recurrent, and thus
the asymptotic failure rate goes to 0 without sacrificing the quantum speedup. In
this work, we attempt to define a quantum resetting mechanism, and probe its effect
on the mean hit time of the walk. Such a protocol is necessary for many quantum
algorithms, where classical resetting may not be possible. We define two resetting
protocols, a non-unitary quantum reset motivated by the coined walk formalism, and
a unitary reset via the Szegedy walk.

First we propose a controlled reset-evolve operation, drawing inspiration from the
coined quantum walk formalism. We show computationally, that for a range of pa-
rameters, there is no apparent speed up gained by this protocol. Furthermore, an
additional coin and non-unitary operation set renders the protocol difficult to analyse.
Thus, we require a quantum reset mechanism which remains unitary. This brings
us to our second resetting proposal based on Szegedy walks. We can quantise the
stochastic reset classical walk, thereby achieving a unitary quantum reset protocol.
We further show computationally that a speedup for the Grover-like search protocol
is achieved by the unitary reset walk for a range of parameters. Finally, we also use
eigenvalue analysis to analyse the space and time complexity of protocol, and show a
clear advantage in running the protocol.
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Introduction

Random walks are a commonly used tool in the arsenal of algorithms on Classical
Computers to solve a variety of problems which do not have a known easy solution.
The power of such methods can be attributed to the fact that while the space of
possible solutions is vast, we only need to sample few solutions to come to a close
solution. This power has been routinely exploited in the past to sample from Markov
Chains using the MCMC algorithm which can be found in any introductory textbook1

of Markov processes, and they have recently been used in the fields of Financial
engineering2, fluid mechanics3, fitting black hole images4 and most famously in the
Los Alamos project5.

With the advent of quantum algorithms, quantum walks have arisen as an obvious
extension of classical walks in the quantum domain. The applications of quantum
walks are just as many: ANN training6, Random Number Generation7, List coloring
(Grover)8, collision finding9, link prediction10. There has even been a recent foray into
classifying and using a quantum-classical walk to speed up certain classical algorithms,
namely the Google PageRank Algorithm11. The increased interest in quantum walks
can be attributed to the quadratic speed up which it grants the solution a-la the
Grover algorithm, which itself can be considered as a Quantum Walk12.

In this master thesis, we will first define the classical (Chapter 1) walk, and specifically,
the 1D walk. The classical 1D walk has a standard deviation which goes as 𝒪(𝑇 1/2),
and is recurrent.

Then we define quantum (Chapter 2) walk, particularly the coined walk on a 1D
grid. The quantum 1D walk has a standard deviation which goes as 𝒪(𝑇 ), and is
transient.

We define these walks with a view of using these walks in search algorithms. We for-
malise the search problem and show how the quantum walk is faster, but its transient
nature leads to a non-zero asymptotic failure rate in Chapter 3.

Then, we look at previous attempts at solving this by resetting (Chapter 4). By
resetting a Markov chain, we can convert a transient chain to a recurrent one. We
explore the effect of resetting in the quantum case, attempting to recreate past work
in continuous time quantum walks in the discrete time quantum walks. We also look
at possible shortcomings of the solution.

In Chapter 5, we introduce a new mechanism for quantum resetting based on super-
position of the evolution and reset operations and show numerically that it does not
have a clear advantage in the search problem (Chapter 5). Due to the complexity of
the formalism, we approach quantum resetting unitarily.

Finally, we introduce a second protocol for reset quantum walks by quantising the
Markov process via Szegedy walks (Chapter 6). We also present a Grover like search

1



Introduction

algorithm, which is easily analyzable by eigenvalue analysis. The results and discus-
sions of this protocol are presented in Chapter 7. We then conclude and provide
future directions of this work in Chapter 8.

Along with the theory, certain aspects of the implementation of the walks computa-
tionally are also added as necessary. This is done inline instead of in an appendix,
which is the norm, since the author believes that such a presentation solidifies the
readers’ understanding of both, the model and the implementation. We use Julia13

and its standard libraries, Plots.jl14, QuantumInformation.jl15, Luxor.jl16, Yao.jl and
YaoPlots.jl17.
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1. Classical Walks

Classical random walks are defined on a graph, with the walker being on some initial
node 𝑖0 with a probability 𝜆𝑖, and “hopping” from node 𝑖 to 𝑗 in each time step with a
probability given by 𝑝𝑖𝑗. We can thus define a transition matrix 𝑃 ∶= 𝑃𝑖𝑗 = 𝑝𝑖𝑗 which
is row stochastic. Thus, the probability mass function of the walker at time step 𝑡 is
given by 𝜆𝑃 𝑡. Of course, the exact structure of the graph and the probabilities will
decide the properties of the walk and there exists a vast amount of literature devoted
to this analysis.

We however will restrict our discussion to the symmetric walk on the 1D chain. This
is often called the 1D-Simple Symmetric Random Walk, and defined in the following
way.

1.1. Definition

Consider an infinite 1 D chain (Figure 1.1), with nodes marked by ℤ.

Figure 1.1.: A schematic representation of the 1D Chain. Nodes are marked by inte-
gers, and edges exist only between neighbor nodes. The simple symmetric
random walk is when the walker chooses to jump along either edge with
equal probability.

Define the probability of hopping from node 𝑖 to node 𝑗

𝑝𝑖𝑗 = {1/2 |𝑖 − 𝑗| = 1
0 otherwise

And the initial state as

𝜆𝑖𝑗 = {1 𝑖 = 0
0 otherwise

3



1. Classical Walks

Thus, the hopper can only move to it nearest neighbors, starting from node 0.

Note that 𝑃(𝑋𝑡 = 𝑖| HISTORY ) = 𝑃(𝑋𝑡 = 𝑖|𝑋𝑡−1), which means that the walk is a
Markov chain.

1.2. Multiple Walkers

The SSRW is clearly a stochastic process, and each run of this process will lead to
different paths being chosen by the walker, and we are my interested in what the
walker does on an average rather than what happens in a particular instance. Thus,
we can observe multiple walks, and plot their paths to visualize how they would spread
in Figure 1.2.

In order to simulate a walk, we sample 𝑋𝑖 ∈ {−1, 1} with equal probability, and add
it to the previous position 𝑆𝑖−1 to get 𝑆𝑖. Note 𝑆0 = 0. Thus, this is equivalent to
sampling from [1, -1] uniformly t times and performing a cumulative sum. For n
walkers, we can sample (t, n) such random numbers, and do a cumulative sum along
the first dimension.

bm = cumsum(rand([1, -1], (200, 15)), dims=1);

Figure 1.2.: An ensemble of classical walkers. Since the walk is stochastic, different
walkers have different trajectories.

1.3. Probability mass function

Another common way to visualize the walk is to plot the probability that the walker
is on node 𝑖 at time 𝑡. For this, we define the transition matrix and 𝜆 appropriately
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1.4. Properties of the walk

and find 𝜆𝑃 𝑡. Note however that the transition matrix for the SSRW is Tridiagonal
with the Upper and Lower diagonals as 0.5 and the diagonal as 0, and there exist
efficient storage and multiplication routines. Also, since we can only store a finite
matrix, we limit the walk to some size. At the boundaries, we set open conditions,
because this is the easiest to implement. Therefore, the walk can be seen as an
evolution of a probability distribution, and the way that the spread occurs can be
seen in Figure 1.3.

cps, cps_t = let
t = 21
U = SymTridiagonal(fill(0., 31), fill(0.5, 30))
λ = fill(0., 31)
λ[16] = 1
ps = accumulate(1:t, init=λ) do old, _

U * old
end[t÷3:t÷3:t], t÷3

end;

Figure 1.3.: Probability distribution of a classical walker in time. Note the well known
diffusive spread of the walk. Although the walker eventually scans the
entire space, it is mostly concentrated around the origin, and spreads
slowly(𝜎 ∝

√
𝑡)

1.4. Properties of the walk

Certain properties of the walk that are interesting for the problem we pose in the
subsequent sections. Primarily, we are interested in the mean, standard deviation
and recurrence of the graph.

5



1. Classical Walks

The probability that a walker is on node 𝑛 at time 𝑡 is given by the expression

𝑝(𝑛, 𝑡) = ( 𝑡
𝑡+𝑛

2
) 1

2𝑡

This equation is valid only if 𝑡 + 𝑛 is even and 𝑛 ≤ 𝑡. If 𝑡 + 𝑛 is odd or 𝑛 > 𝑡, the
probability is zero It should be obvious from the even symmetry of 𝑝(𝑛, 𝑡) that the
mean 𝜇(𝑡) = ∑𝑛 𝑛𝑝(𝑛, 𝑡) = 0. This comes from the fact that the walk is symmetric.
From Figure 1.3, we see that the walker spreads diffusively, and is more heavily
concentrated in the middle of the chain rather than the edges. Mathematically, this
follows from the binomial distribution.

The standard deviation of the walker position 𝜎(𝑡) = √⟨𝑛2⟩ − ⟨𝑛⟩2 = √∑𝑛 𝑛2𝑝(𝑛, 𝑡) =
√

𝑡18. Therefore, this means that the walker reaches about double the space in about
four times the amount of steps.
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2. Quantum Walks

2.1. Introduction

Quantum walks are defined analogous to the classical walks. First, our walker is
quantum mechanical, and the position of the walker can be a superposition of the
nodes. Thus, we define the state of the walker to be a superposition of the node
states |𝑖⟩.

|𝜓⟩ = ∑
𝑖

𝑐𝑖|𝑖⟩

Let this Hilbert space be denoted as ℋ𝑊 . The projection of the state on some node 𝑖
given by |⟨𝑖|𝜓⟩|2 = |𝑐𝑖|2 is understood as the probability that the walker will collapse
to the state |𝑖⟩ on measurement.

To define the evolution of the node, we look back at the transition matrix 𝑃𝑖𝑗. Thus,
we would define an operation in the following manner -

𝑂|𝑖⟩ = ∑
𝑗

√𝑝𝑖𝑗|𝑗⟩

The walk proceeds by repeated application of 𝑂.

While this expression is enough to define the walk, it is not immediately clear how
one would explicitly realize such an operation. Multiple formalisms define such walks,
but we shall use the coined quantum walk formalism which is very natural for reg-
ular graphs, as is the case for the 1D chain. Note that for the symmetric walks on
nD lattices, like the 1D chain, the tight-binding model is already a well understood
continuous time quantum walk. However, we prefer a discrete time formalism.

2.2. Coined Quantum Walk for 1D Chain

For the 1D chain, given a specific node, there are only 2 other nodes connected to
it. Thus, we can add a 2 level system, which “decides” which node the walker jumps
to. More formally, we attach a 2 level qubit system to the walker whose bases are
denoted by |0⟩ and |1⟩. Let us denote this Hilbert space as ℋ𝐶

Thus, we can define the shift operation as

7



2. Quantum Walks

𝑆|0⟩|𝑖⟩ = |0⟩|𝑖 − 1⟩; 𝑆|1⟩|𝑖⟩ = |1⟩|𝑖 + 1⟩

How would we define such an operation explicitly?

Controlled shift operation

𝑆 = |0⟩⟨0| ⊗ 𝑆𝐿 + |1⟩⟨1| ⊗ 𝑆𝑅

Where 𝑆𝐿 and 𝑆𝑅 are defined as

𝑆𝐿|𝑖⟩ = |𝑖 − 1⟩, 𝑆𝑅|𝑖⟩ = |𝑖 + 1⟩

Note that 𝑆 operates on ℋ𝐶 ⊗ ℋ𝑊 , whereas 𝑆𝐿 and 𝑆𝑅 operate on ℋ𝑊 only.

The superposition in the two choices at each step is recovered by putting the coin
into a superposition of its basis states. This is achieved via a coin operator, which is
commonly defined as 𝐻 ⊗ 𝐼 , where 𝐻 is the single qubit Hadamard operator.

Quantum Walk

Thus, one step of the quantum walk is defined as 𝑆 ∘ 𝐻 ⊗ 𝐼 , operating on a two
level coin and an 𝑛 level system, with the state of the whole system lying in
ℋ𝐶 ⊗ ℋ𝑊

Let us explicitly write down two steps of the walk

𝐻 ⊗ 𝐼(|0⟩|0⟩) = |0⟩|0⟩ + |1⟩|0⟩√
2

𝑆 (|0⟩|0⟩ + |1⟩|0⟩√
2

) = |0⟩| − 1⟩ + |1⟩|1⟩√
2

𝐻 ⊗ 𝐼 |0⟩| − 1⟩ + |1⟩|1⟩√
2

= |0⟩| − 1⟩ + |1⟩| − 1⟩ + |0⟩|1⟩ − |1⟩|1⟩
2

𝑆 |0⟩| − 1⟩ + |1⟩| − 1⟩ + |0⟩|1⟩ − |1⟩|1⟩
2 = |0⟩| − 2⟩ + (|1⟩ + |0⟩)|0⟩ − |1⟩|2⟩

2

2.3. Repeated application of Coin Operator

Note specifically the repeated application of the coin operator. If the coin operator is
not applied in step 3, our state will end up in 1√

2(|0⟩| − 2⟩ + |1⟩|2⟩) which is not what
we wanted. This is because the application of the controlled shift operation entangles
the coin and the walker systems, and thus there is no superposition in each term of
the system

8



2.4. Computational Implementation

2.4. Computational Implementation

We show 2 ways to implement the Quantum walks, which are both interesting in their
own ways. But the foremost thing to tackle would be how to store an infinite vector
and an infinite dimensional operator. Since we cannot do either of these simply, we
instead limit our walk to a node space of 2𝑛, and use periodic boundary conditions.

Other Boundary Conditions

One could pick other boundary conditions too, such as the open or the absorb-
ing boundary conditions, but both of these BCs lead to non-unitary operations,
which complicate the definition and application of the gate.

2.4.1. Matrix formalism

The first and more immediate method is to simply write down the matrix equivalent
of the above operations. For the visualization of the implementations, we will assume
that the walk occurs in a 1 D chain of size 4.

The coin is preferred to be in the 1√
2(|0⟩ + 𝑖|1⟩) state when we start so that the walk

proceeds symmetrically18.

init_coin = 1/√2 * (ket(1,2) - 1im * ket(2,2));

The coin operator is trivial to write,

H = KrausOperators([sparse(hadamard(2)⊗I(4))]);

The left and right shift operators can be defined in the following manner.

R = collect(Tridiagonal(fill(1., 3), zeros(4), zeros(3)))
R[1, end] = 1
L = collect(Tridiagonal(zeros(3), zeros(4), fill(1., 3)))
L[end, 1] = 1

Thus, the shift operator is defined as

S = KrausOperators([sparse(proj(ket(1, 2)) ⊗ L + proj(ket(2, 2)) ⊗ R)]);

Thus, we can repeatedly apply 𝑆 ∘ 𝐻 to the initial state and accumulate the results.

init_state = proj(init_coin ⊗ ket(2,4))
ψ = [[init_state]; accumulate(1:40, init=init_state) do old, _

H(S(old))
end];

Now we can plot the readout statistics by partially tracing out the coin, and plotting
the diagonal. Figure 2.1 is a walk on 61 nodes.

9



2. Quantum Walks

Figure 2.1.: Probability distribution of a Quantum Walker on a 1D chain in time.
Note the ballistic spread (𝜎 ∝ 𝑡)of the walk, compared to the diffusive
spread of the classical walk in Figure 1.3.

Quantum Walks are not random

Note, this is a single walker, not an ensemble of walkers as is the case in clas-
sical random walks. Quantum walks (without measurement), are completely
deterministic.

2.4.2. Circuit Formalism

While the matrix definition of the Quantum Walks are easy to formalise and under-
stand, finally these need to be simulated on some sort of device which may require
us to reformulate it. Further, we try to ensure that the reformulation allows for easy
additions of other dynamics which we may want to study.

The advantages of using a Quantum Computer over a classical computer for a quantum
walk should be obvious. The problem however is that the quantum walk is over a
high dimensional space, and we rarely have access to such high dimensional systems
which we can control easily. Instead, we need to simulate such a system using the
accessible 2 level systems available in quantum computers.

Let us define the basic components of our walk.

2.4.2.1. Nodes

• Each numbered node is then converted into its 2-ary 𝑛 length representation
denoted by (𝑥𝑖). 𝑛 is chosen such that 2𝑛 > 𝑁

10



2.4. Computational Implementation

• These bitstrings are encoded into an 𝑛 qubit computer, where each basis state
in the computational basis corresponds to the node with the same bitstring.

• The amplitude of a particular basis corresponds to the amplitude of the walker
in the corresponding node

2.4.2.2. Coin

• The Walk Coin is a two level system, as usual

2.4.2.3. Edges and Shifts

• Since shifts are only to adjacent nodes, the left (right) shift is equivalent of
subtracting (adding) 1 from the bitstring of the state.

• From the Quantum adder circuit, we can set one input to be (0)𝑛−11 and reduce
the circuit to get the Quantum AddOne circuit. Shown below is the circuit for
𝑛 = 4 (𝑁 = 16)

• We can similarly construct the SubOne circuit, but that is simplified by noting
that the SubOne circuit is simply the inverse of the AddOne circuit, and this
corresponds to just inverting the circuit (all gates are unitary).

• The circuits for the left (and right) shift operation is shown in Figure 2.3 (and
Figure 2.2)

rightshift(n) = chain(
n,
map(n:-1:2) do i

control(1:i-1, i=>X) end...,
put(1=>X)

)
leftshift(n) = rightshift(n)';

YaoPlots.plot(rightshift(4))

Figure 2.2.: A diagrammatic representation of the right shift circuit.

11



2. Quantum Walks

YaoPlots.plot(leftshift(4))

Figure 2.3.: A diagrammatic representation of the left shift circuit.

• The controlled shift operation is encoded by controlling on the coin qubit as
seen in Figure 2.4.

shift(n) = chain(n+1,
control(1, 2:n+1 => rightshift(n)),
put(1 => X),
control(1, 2:n+1 => leftshift(n)),
put(1 => X),

)

YaoPlots.plot(shift(4))

Figure 2.4.: A diagrammatic representation of the controlled shift circuit. This acts
as the Controlled shift operator.
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2.4. Computational Implementation

2.4.2.4. Coin operator

We can add the coin operator as usual on the first rail (Figure 2.5).

coin(n, c=Yao.H) = chain(n+1, put(1 => c))
YaoPlots.plot(coin(0))

Figure 2.5.: A diagrammatic representation of the coin operator circuit. This acts to
introduce superposition in the coin.

2.4.2.5. Evolve Circuit

Putting these together, we get the operation for a single step of the evolution as below.
Note that the top qubit rail is that of the coin, and the rest are those of the simulation
of the system.

This circuit (Figure 2.6) can be repeated to achieve any number of steps.

evolve(n) = shift(n) * coin(n)
YaoPlots.plot(evolve(4))

Figure 2.6.: A diagrammatic representation of the Quantum walk evolve circuit, com-
posed of a Coin operator followed by a Controlled shift. This acts as the
Walk operator

2.4.2.6. Prepare circuit

While we can already simulate the walk, a very useful helper function that we can
define is the prepare circuit.

13



2. Quantum Walks

Quantum registers are often initialized to the 0 state, and it is also easy to restart
the walk from the 0 state. However, we often like to start the walk in the center of
the chain instead of at node 0. Also, the coin is preferred to be in the 1√

2(|0⟩ + 𝑖|1⟩)
when we start so that the walk proceeds symmetrically18.

Hence, to perform these steps, we define the following prepare subroutine (Fig-
ure 2.7).

prepare(n) = chain(
n+1,
put(1=>Yao.H),
put(1=>Yao.shift(-π/2)),
put(n+1=>X)

)

YaoPlots.plot(prepare(3))

Figure 2.7.: A diagrammatic representation of the initial state preparation circuit.

Plotting the walker distribution (Figure 2.8) as before, we see that the two implemen-
tations are equivalent.

2.5. Properties of the walk

Similar to the classical random walk, the mean 𝜇(𝑡) = 0, if the initial state of the
coin is 1

𝑠𝑞𝑟𝑡2(|0⟩ − 𝑖|1⟩. If the coin is in another state, then the walk is biased towards
a direction.

A more interesting feature is that the standard deviation 𝜎(𝑡) = 0.54𝑡18. Compare
this with the classical random walk (Figure 2.9), the quantum walk has a quadratic
speed up. This is the reason for the quadratic speedup commonly seen in the Grover
search and other Monte Carlo problems.
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2.5. Properties of the walk

Figure 2.8.: Quantum walk using circuit formalism. For this simulation, we use 6
qubits (26 = 64 nodes) to represent the walker system. See that the
probability distribution changes similarly to Figure 2.1

Figure 2.9.: A comparision between the standard Deviation with time for the quan-
tum(crosses) and classical random(circles) walks18. It is clear that the
quantum walk spreads ballistically, whereas the classical walk spreads
diffusively.
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2. Quantum Walks

2.6. Why the speed up?

We have seen that the quantum walk spreads ballistically and therefore shows a
quadratic speed-up over the classical walk. This can be explained much more clearly
from the continuous time versions of these walks19.

In the classical case, we have the master equation -

𝜕𝑃 (𝑥, 𝑡)
𝜕𝑡 = 𝛾 [𝑃 (𝑥 + 1, 𝑡) + 𝑃(𝑥 − 1, 𝑡) − 2𝑃(𝑥, 𝑡)]

In the quantum case, we have the Schrodinger equation -

−𝑖𝜙(𝑥, 𝑡)
𝜕𝑡 = 𝛾 [𝜙(𝑥 + 1, 𝑡) + 𝜙(𝑥 − 1, 𝑡) − 2𝜙(𝑥, 𝑡)]

These look almost the same, but the most important difference is that where the
classical walk is an evolution of probability distributions, the quantum walk is an
evolution of probability amplitudes; where probability distributions must be positive,
probability amplitudes may be negative, or even complex. This is the key ingredient
that allows us to introduce interference within the forward-moving and backward-
moving parts of the wave, such that the walker concentrates on the edges rather than
the middle, thereby exploring the space faster.
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3. Search Algorithms

A common application of walks is in search problems. In search problems, we generally
have a black box function

𝑓(𝑥) = {0 𝑥 ∈ 𝐺
1 𝑥 ∈ 𝐺𝐶

where 𝐺 ∪ 𝐺𝐶 = 𝑆 which is the search space. We are interested in developing an
algorithm to output some 𝑥 ∈ 𝐺 by querying 𝑓 .

Naively, one can run a stochastic process over the domain 𝐺 ∪ 𝐺𝐶 and observe the
system until we see an element in 𝐺. The average time to succeed in this protocol is
called the hitting time of 𝐺, and denoted as 𝐻𝑇 (𝑃 , 𝐺). Naturally, we not only want
high success rates, but we also want low mean hit times.

In the particular case of Markov chains, hitting times are a kind of stopping time
(Appendix A), and are well studied in their own regard.

3.1. Formalism

Define the following

• Denote the readout at the 𝑛th measurement (at 𝑡 = 𝑛𝜏) as 𝑋𝑛.
• Select a target node 𝛿
• Probability of first hit in 𝑛 steps 𝐹𝑛 = 𝑃(𝑋𝑛 = 𝛿|𝑋𝑖 ≠ 𝛿∀𝑖 ∈ [0, 𝑛 − 1])
• Mean hit time ⟨𝑡𝑆⟩ = ∑∞

𝑖=0 𝑖𝐹𝑖
• Success probability in 𝑛 steps 𝑆𝑛 = ∑𝑛

𝑖=1 𝐹𝑖 = 𝑃(∃𝑖 ∈ [0, 𝑛]|𝑋𝑖 = 𝛿)
• Survival probability = Failure probability = 𝒮𝑛 = 1 − 𝑆𝑛
• Asymptotic versions of these terms are given by taking 𝑛 → ∞

3.1.1. Readout in Walks

To identify whether a walker has hit the target node, we need to track the location of
the walker as it evolves in time.

For the classical case, this poses no problem, as measurement does not disturb the
system. In the quantum case however, we need to be a bit more careful.
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3. Search Algorithms

A constantly measured walker will freeze the dynamics of a quantum walker. This is
known as the Quantum Zeno effect. The solution for this is to measure after every 𝜏
steps.

Semi-quantum walk

This results in what is technically a semi-quantum walk20, since measurement
leads to a complete loss of coherence in the system. However, the walk between
two measurement events is quantum in nature, and increasing 𝜏 leads to the
quantum features of the walk dominating. We shall however keep this at the
back of our minds and refer to this walk as the quantum walk, until we reach
Chapter 6.

Reduction to classical random walk with 𝜏 = 1
The quantum 𝜏 = 1 case reduces the discrete time quantum walk to a classical
random walk with 𝜏 = 1. Effectively, we apply a dephasing operator on the
density matrix, dropping all off diagonal terms. Thus, we lose all effects of
superposition, causing the classical random walk.

Plotting the readout trajectories of walkers with different parameters in Figure 3.1,
we see the very clear difference in the spread between the classical readout and the
quantum readout for same 𝜏 : The quantum walker spreads much faster than the
classical walker, and thus scans a larger area. Similarly, note the spread between
the quantum readouts for different 𝜏s: A larger 𝜏 value leads to the walk behaving
more quantum-like, corresponding to a larger spread for the same number of measure-
ments.

3.2. Markov Chains and Walks

In the classical case, it is clear that the 1D SSRW is a Markov process. In Appendix B,
we show that the quantum walk with measurement is also a Markov process. Conse-
quently, we can use certain results from the theory of Markov processes to compare
the two walks.

3.2.1. Irreducibilty and Recurrence

Under the usual definition of irreducibility (Appendix A), it is trivial that in the 1D
chain, 𝑛 = 𝑚 = |𝑖 − 𝑗|𝜏 satisfies the condition. It is a well known fact that the 1D
SSRW is recurrent. It is just as well known a fact that the 3D SSRW is transient1.

In the quantum case, it is not as clear whether any of the available definitions of the
quantum Markov process is more or less good than the others. Thus, the transience
of quantum walks depends on the exact definition we are working under21. In our
definition however, it can be shown using symbolic computation22 that the walk is
indeed transient. This poses an interesting problem which we shall discuss below.
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3.3. Survival probability

Figure 3.1.: Trajectories of readouts in quantum and classical walks. The dependence
on the spread of the walk on the time between measurement is clear, with
larger 𝜏 values spreading more, and the quantum walks spreading faster
than their classical counterparts.

3.3. Survival probability

We can thus measure and plot the 𝑆𝑛 − 𝑛 curve for the quantum and classical walks
to compare the efficiency of these walks in the first hit problem.

In previous work19, the analytical solution of the success rate as a function of time is
found. An analytical result for discrete time walks is harder due to the nature of the
walk. However, we reproduce the results for the discrete time case computationally.
Figure 3.2a19 shows the success rate for the continuous time quantum and classical
walks, and Figure 3.2b shows our results for the discrete time case.

3.3.1. Observations - The Tortoise and the Hare

In the continuous time case:

• The quantum walk has a fast rise in the initial phase but saturates at ~0.1
• The classical walk has a slow rise, but eventually reaches 1

In the discrete time case, solved computationally:

• Both walks do eventually reach 1
• The quantum walk shows a saturation for a while before suddenly rising again
• The classical walk shows a slow rise in the beginning phases, in contrast to the

sharper rise of the quantum walk.
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3. Search Algorithms

(a) Success probability vs Time for both walks19, continuous time. 𝜏 = 0.25, 𝛿 = 10. Asymp-
totic success rate of the quantum walk is approximately 0.1, whereas the classical walk
approaches 1.

(b) Success probability vs Time for both walks, discrete time. 𝛿 = 10. See that more “quan-
tumness” in the walk leads to a faster initial rise, but saturation at lower asymptotic
success, allowing the slower classical walk to overtake.

Figure 3.2.: Success probability vs Time for both walks, continuous and discrete time.
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3.3. Survival probability

There seems to be an apparent difference between the discrete and the continuous
time walks, where in the discrete walk, the asymptotic success reaches 1 even in the
quantum case, but this is only an artifact of the finite size of the walk space. It is
well known that any irreducible finite chain is recurrent23. This claim can be verified
by simply increasing the size of the state space, and noting that the saturation phase
in the quantum walk lasts longer.

The observations in the continuous time case can be explained by the recurrence of
the walk. While the quantum walker is faster (See Chapter 2), the transient nature
(See Section 3.2.1) of the walk leads to a non-zero asymptomatic failure rate. Clearly
this is a problem. What this means practically, is that for the first hit problem, if the
quantum walk hits the target node, it does so faster than the classical walk, but a
majority of the times, it doesn’t hit the target node at all. This is reminiscent of the
age-old fable of a race between the Tortoise and the Hare. The Tortoise-like classical
walk is slow, but trudges on to the finish line, whereas the Hare-like quantum walk
speeds away in the beginning, but falls behind.

But we want a walk that is both fast, and with an asymptotic success rate of 1. Can
we give something to our Hare so that it doesn’t fall asleep?
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4. Stochastic Resetting

The crux of the matter is this. The quantum walk is fast in the initial phase, but
eventually saturates asymptotically to a success rate of < 1. This means that some
of the walkers hit the target, and others do not. If that is the case, is it possible to
restart the walk when it starts saturating? That is, can we restart the walk for the
walkers that have not yet hit the target after 𝑟𝜏 time?

For such dynamics, we will need to reformulate the walk slightly.

4.1. Formalism

A reset of the walker (classical or quantum) implies that the walker returns to its
initial state, and the walk dynamics continue from there.

However, we can vary when we reset the walker by considering multiple reset processes.
That is, we can vary the distribution from which we sample the times between two
resets. A common reset process is the Poisson reset, where the reset times are modelled
as a Poisson process with some parameter 𝑟. This is particularly convenient in the
case of continuous time walks24.

For the discrete walks, the geometric distribution is more natural.

𝑡𝑟 − 𝑡𝑟−1 ∼ Geom(𝛾)

Thus, at each step, there is a 𝛾 probability of reset. This results in different dynamics,
which can be seen in subsequent subsections, but it has an equally drastic effect on
the recurrence of the walk.

4.1.1. Recurrence and Resetting

In the geometric resetting case, it is clear that 𝑃 𝑛
00 ≥ 𝛾, and hence ∑𝑛 𝑃 𝑛

00 ≥ ∑𝑛 𝛾
which diverges as 𝑛 → ∞. Thus, regardless of the initial walk, the final walk will def-
initely be recurrent for all irreducible walks (See Appendix A). Thus, the motivation
for resetting the quantum walk which is transient should be immediately clear.
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4. Stochastic Resetting

4.1.2. Stochastic Reset Classical Walk

In the classical case, the transition probabilities change to

𝑝𝑖𝑗 =
⎧{
⎨{⎩

(1 − 𝛾) ⋅ 1/2 |𝑖 − 𝑗| = 1
𝛾 𝑗 = 𝑟0
0 otherwise

Thus, the new transition matrix is modelled as

γ = 0.2
U1 = sparse(SymTridiagonal(fill(0., 31), fill(0.5, 30)))
R = fill(0., (31, 31))
R[21,:] .= 1
U = sparse((1-γ) * U1 + γ * R);

where U1 is the unchanged walk matrix and R is the reset matrix. We plot the proba-
bility distribution of the stochastic reset classical walk in Figure 4.1.

Figure 4.1.: Probability distribution of the Stochastic Reset Classical Walk. See that
the walker is now stably localized near the reset node. At intermediate
times, we see features of the walk and the resetting.

4.1.3. Stochastic Reset Quantum Walk

In the quantum case, the evolution changes from unitary dynamics to a non-unitary
CPTP map of the following form.
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4.1. Formalism

𝑂𝑆𝑅(𝜌) = (1 − 𝛾) (𝑈𝜌𝑈†) + 𝛾|𝑟0⟩⟨𝑟0|

where 𝑈 is the walk unitary. Plotting this walk in Figure 4.2, we see certain similarities
with the stochastic reset classical walk.

function srqw(n, γ)
R = collect(Tridiagonal(fill(1., n), zeros(n+1), zeros(n)))
R[1, end] = 1
L = collect(Tridiagonal(zeros(n), zeros(n+1), fill(1., n)))
L[end, 1] = 1
U = KrausOperators(

[sparse(proj(ket(1, 2)) ⊗ L + proj(ket(2, 2)) ⊗ R)]
)
init_coin = 1/√2 * (ket(1,2) - 1im * ket(2,2))
H = KrausOperators([sparse(hadamard(2)⊗I(n+1))])
init_state = proj(init_coin ⊗ ket(n÷2 + 1, n+1))
ψ = [[init_state]; accumulate(1:40, init=init_state) do old, _

(1-γ)*H(U(old)) + γ*proj(init_coin ⊗ ket(n÷2+6, n+1))
end]

end;

Figure 4.2.: Probability distribution of the Stochastic Reset Quantum Walk. See that
the walker is now stably localized near the reset node, but is much more
spread out compared to the classical case(Figure 4.1) as an obvious result
of the faster quantum walk. At intermediate times, we see features of the
walk and the resetting.
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4. Stochastic Resetting

4.2. Effect of Resetting on First Hit problem

For this analysis, we will consider the simpler “sharp reset” formalism19, where the
reset time is sampled from a distribution

𝑡𝑟 ∼ 𝛿(𝑡 − 𝑟𝜏)

Therefore, we restart after 𝑟 measurement events (at 𝑡 = 𝑟𝜏). Once we understand
the effect of this kind of reset, gaining intuition for reset times sampled differently is
easier.

The success probability versus time can now be plotted (Figure 4.3a)19 for the reset
case.

Now we see that the success probability is drastically increased for both cases, but
due to the ballistic nature of the quantum walk, we see that the reset quantum walk
performs much better than the classical walk.

For a better understanding of the performance of the reset quantum walk with ref-
erence to changing reset rates (𝑟) and measurement times (𝜏), we can plot (Fig-
ure 4.3b)19 the mean first hitting time versus these parameters.

(a) Reset Success probability vs Time19. See that
picking the correct 𝑟 value can make the quan-
tum walk outperform even the optimally reset
classical walk.

(b) Effect of 𝑟 and 𝜏 on mean hitting
time19. See that very small and
very large values of 𝑟 lead to poor
performance of the walk

Figure 4.3.: Sharp Reset Continuous Time Quantum Walk

4.2.1. Observations

• Deterministic restart leads to zero asymptomatic failure rate
• Eager restarting leads to walker never reaching 𝛿, reducing success rates drasti-

cally
• Cautious restart reduces the effect of restart, reducing success rates.
• There exists an optimal 𝑟, but this needs to be optimized, which is nontrivial

for general 𝜏 and graph structures.
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4.3. Sharp Reset for Discrete time walks

Can stochastic restarting be better than sharp reset?

No, because even if ⟨𝑟⟩ = 𝑟optimal, ⟨𝑡𝑓⟩ > ⟨𝑡𝑓⟩optimal due to the non-monotonic
nature of the curve

4.3. Sharp Reset for Discrete time walks

For discrete time walks, the sharp reset walk is given by

|𝜓𝑡⟩ = 𝑈 𝑡−𝑟𝑙𝜏(|𝑐init⟩ ⊗ |0⟩)

where 𝑟𝑙𝜏 was the time of last reset.

Equivalently, in the circuit model, the reset circuit is considered to be a measure
followed by post process where we apply the appropriate unitary rotation to rotate
to |𝜓0⟩.

(a) P(hit) vs Time (b) ⟨𝑇ℎ𝑖𝑡⟩ vs 𝛾

Figure 4.4.: Sharp Reset Quantum Walk - Multiple Sampling. Walk was performed
by simulating the circuit formalism with 𝛿 = 10 on a cycle of size of 256
nodes. Note that the success curves and the dependence of mean hitting
time is similar to the continuous case (Figure 4.3)

Our results are plotted in Figure 4.4 where the circuit formalism is run multiple times,
and in Figure 4.5, we pick the diagonal term from the matrix formalism as the infinite
limit. Note the similarity between the continuous and discrete curves. However, also
note the difference between the non reset curve, where in the discrete case, success
probability still reaches 1, this can be attributed, as before, to the finiteness of the
walk space.

4.4. The Problem in the Solution

As discussed before, reset rates which are very high or low can end up being detri-
mental to the success times of the walk. Secondly, there is no clear path as to how to
optimize the reset parameter for arbitrary graph structures.
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4. Stochastic Resetting

(a) P(hit) vs Time 𝜏 = 4 (b) ⟨𝑇ℎ𝑖𝑡⟩ vs 𝛾 𝜏 = 4

(c) P(hit) vs Time 𝜏 = 8 (d) ⟨𝑇ℎ𝑖𝑡⟩ vs 𝛾 𝜏 = 8

Figure 4.5.: Sharp Reset Quantum Walk - Smooth Sampling. Walk was performed by
simulating the matrix formalism with a dephasing operation to simulate
measurement, and picking the diagonal term of the density matrix as
the probability of hitting the target at every measurement event. Note
particularly that the 𝑟 = 0 corresponds to a no reset case, and
this value is simply an effect of the way it was coded. 𝛿 = 10, 𝑛 =
512. Note that the success curves and the dependence of mean hitting
time is similar to the continuous case (Figure 4.3)
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4.4. The Problem in the Solution

A more fundamental problem with this protocol is the requirement of measuring at
intermediate steps, and resetting accordingly. This measurement leads to a complete
loss in coherence of the quantum walk. Thus, while the walk is fully quantum be-
tween measurements, measurement leads to a semi-quantum walk corresponding to
a slowdown. Thus, fully quantum protocols such as the Grover search may not di-
rectly benefit from this resetting protocol. Therefore, we require a quantum resetting
protocol as compared to the classical resetting mentioned here.
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5. Quantum Resetting by
Superposition

From the previous discussion, it seems fruitful to consider a quantum reset of quantum
walks. Just as we harnessed the power of quantum superposition to speed up the walk,
can we similarly have a superposition between the reset and evolution to increase
the efficiency of hitting a node? The concept is similar to that of the quantisation
of the classical walk: let the resetting occur on probability amplitudes rather than
probabilities, allowing for interference in areas we do not want the walker to be on.
In this case however, the superposition is on the level of operations, not the walker
position directly.

Our first protocol is motivated by the quantum resetting of quantum systems intro-
duced in Anubhav Srivastava’s24 master thesis, where a similar formalism was applied
to a qubit system. The faster convergence of the quantum reset system acts as the
primary indicator that such a speed-up may also be visible in quantum walks.

5.1. Formalism

On a finite 1D chain of length 2𝑁 + 1, define the following -

• Reset operation - ℛ by the Kraus operators {ℛ𝑖 = |𝑟0⟩⟨𝑖|}𝑖∈[−𝑁,𝑁] on ℋ𝑊
• Evolve operation - 𝒰 by the unitary operation 𝑆 ∘ 𝐻 on ℋ𝐶 ⊗ ℋ𝑊
• Attach another two level coin - states denoted by |0⟩ and |1⟩. Resulting state

lies in ℋ𝑅 ⊗ ℋ𝐶 ⊗ ℋ𝑊
• Controlled reset operation - ℰ by the Kraus operators {ℰ𝑖 = |0⟩⟨0| ⊗ 𝐼2 ⊗

ℛ𝑖 + 1√
𝑁 |1⟩⟨1| ⊗ 𝒰}𝑖∈[−𝑁,𝑁]. See Appendix C for proof that this set of Kraus

operators represents a CPTP map.
• A reset coin operator Γ(𝛾) = [

√1 − 𝛾 √𝛾√𝛾 −√1 − 𝛾] on ℋ𝑅

Quantum Reset

One step of the resulting walk is defined as

ℰ ∘ (Γ ⊗ 𝐼2 ⊗ 𝐼2𝑁+1)
Once again, the hitting protocol is found by measuring the walker position after
𝜏 time steps.

31



5. Quantum Resetting by Superposition

Although the protocol is similar to the motivation, the current problem we are con-
sidering of the first hit time has drastically changed the methods of exploration and
the property we want to optimize. Where previously we only probed the convergence
time, here we also want to maximize the probability of hitting the target node.

5.1.1. Interpretation of 𝛾 and dependence on initial condition of
the coin

In the stochastic resetting 𝛾 is understood as the “rate” of resetting. However, this
is no longer accurate for the quantum case. Consider the case for 𝛾 = 0. Then, the
Gammamard operator Γ = [1 0

0 −1]. This does not automatically imply that the

reset never occurs; we also require that the initial state of the reset coin is |0⟩. If the
initial state of the reset coin is |1⟩, this corresponds to the always reset case. Thus,
𝛾 is better understood as the probability that given the last step was a Reset, what
is the probability this step is an Evolve, and vice versa. Thus, it is not immediately
obvious how we can compare the reset mechanisms for a given 𝛾. Nor is it obvious
how the initial state of the reset coin finally affects the success probability and such,
and needs to be numerically checked.

5.1.2. Resetting of the walker coin

In our specific formalism (Section 5.1), we have only applied the reset operation on
the walker ℋ𝑊 . One could also reset the walker coin ℋ𝐶 and see what happens. In
our current formalism, there is no entanglement broken between the two coins, but
there is no a priori understanding of how this may (or may not) affect the walk.

5.2. Computational Implementation

Implementations of 𝒰, 𝑈, 𝐻 follow as before. The ℰ operation is implemented as

function €(n, r₀)
ks = map(1:n) do i

(1/√n * [1 0; 0 0] ⊗ (S(n)*H(n))) +
[0 0; 0 1] ⊗ I(2) ⊗ real(ket(r₀,n)*bra(i,n))

end
return KrausOperators(sparse.(ks))

end;

The Gammamard operation Γ is defined as

Γ(γ) = [
√(1-γ) √γ;
√γ -√(1-γ)];
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5.3. Results

We take the initial reset coin to be (𝑆(−𝜋/2) ∘ Γ(𝛾))|0⟩ for the same reason as in the
quantum walk

reset_init(γ) = [1 0; 0 -1im]*gammamard(γ)*ket(1, 2);

5.3. Results

5.3.1. What the walk looks like

For the specific choice of initial reset coin as 1/
√

2 (|0⟩ − 𝑖|1⟩) and 𝛾 = 0.2, the
quantum reset walk looks like Figure 5.1.

Figure 5.1.: Probability distribution of the walker in Quantum Reset Walk. We see a
markedly different stable distribution as compared to the stochastic reset
case Figure 4.2, with a much sharper cusp, but also a much more spread
out walker.

5.4. Results and Discussion

As discussed in Section 5.1.1, we need to vary the three parameters, (𝛼, 𝜙, 𝛾), and
see what happens. Thus, we plot the success curves for a few sets of parameters
(Figure 5.2), and find the minimum mean time of hit for each fixed parameter (Fig-
ure 5.3).
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5. Quantum Resetting by Superposition

(a) Parameter set 1 (b) Parameter set 2

(c) Parameter set 3

Figure 5.2.: Mean hitting time for some parameter sets. We see a nontrivial depen-
dence on the initial state of the coin.
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5.4. Results and Discussion

(a) 𝛼 vs 𝜙 (b) 𝛼 vs 𝛾

(c) 𝜙 vs 𝛾

Figure 5.3.: Value of the third parameter for optimal mean hitting rate, found by
fixing the other two parameters. We surprisingly see that 𝛾 = 0 or 1 is
the optimal value for all initial conditions. Furthermore, the effect of 𝜙
is symmetric about 𝜋

As we can see, the mean time of hit even for the best set of parameters (within the
ranges explored) is not better than the optimal time for the stochastic reset protocol.
This result however may not hold true for other values of 𝜏 , and more work is necessary
to conclusively state that there isn’t (or is) any speedup achieved here.

5.4.1. Optimal Parameter Values

Table 5.1.: Optimal Parameter Values
𝛼 𝜙 𝛾

0.0 0.0 10−5

5.4.2. The Issue of Non-Unitarity

One drawback of this formalism is its complexity. Whereas the stochastic reset pro-
ceeded by a unitary evolution between measurement events, the quantum reset proto-
col is inherently a non-unitary operation. This makes analysis more complicated.

The difficulty doesn’t only lie in analytical complexity, but also in simulations, where
simulating the quantum reset quantum walk takes much longer. This can be at-
tributed to the larger system size (size of 𝜌 = 16𝑁2), and due to the increased number

35



5. Quantum Resetting by Superposition

of matrix multiplications and additions (2𝑁 matrix multiplications of size 4𝑁 × 4𝑁
(64𝑁3 multiplications and 64𝑁3 − 16𝑁2 additions) followed by 𝑁 matrix additions
($16N^2 additions) which finally consists of 128𝑁4 multiplications and 128𝑁4 addi-
tions for one step of the quantum reset walk, as compared to 2 ⋅ 8𝑁3 multiplications
and 2 ⋅ 8𝑁3 − 4𝑁2 additions. Even ignoring the additions, the quantum reset walk
is 𝒪(𝑁4) whereas the stochastic reset walk is 𝒪(𝑁3) to simulate. For any reason-
ably large cycle (to avoid finite size effects), this cost makes simulating the walk for
different parameters extremely tedious.

Therefore, although we have been able to introduce a superposition between the two
operations, and we have decoupled the resetting from the measurement, we require a
unitary protocol to efficiently perform the walk.
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6. Quantum Markov Chains

Figure 6.1.: Work until now: Our initial proposal to combat the transient nature of the
quantum walk was by following a semi-quantum stochastic reset protocol.
To further quantise the resetting mechanism, we propose a coined reset
formalism. This proved to be too complex, prompting a unitary reset
walk, which we shall introduce now.

As suggested in the earlier chapter, we would like to define a unitary quantum resetting
protocol unitary for analytical and interpretational simplicity. For this, we reconsider
our path until now (Figure 8.1). Instead of quantising the stochastic reset quantum
walk via a coin, can we quantise the stochastic reset classical walk directly?
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6. Quantum Markov Chains

6.1. Generalized Coined walks

When we quantised walks in Chapter 2, we attached a 2 level coin whose states rep-
resented the selected edge, and by putting the coin into superposition, one can apply
a superposition of jumps. We would like to quantise walks on arbitrary undirected
graphs using the coined walk formalism.

Graphs can be partitioned into two classes, Class 1 and 2, based of the chromaticity
of the graph.

Edge Chromaticity

The edge-chromaticity of a graph is the minimum number of colors that the edges
can be colored with such that no two adjacent edges are similarly colored and is
denoted by 𝜌(𝐺).

By Vizing’s theorem25, Δ(𝐺) ≤ 𝜌(𝐺) ≤ Δ(𝐺) + 1, where Δ(𝐺) is the max degree of
the graph.

Graphs of Class 1 are those where Δ(𝐺) = 𝜌(𝐺) and graphs of Class 2 are the others.
Walks on Class 1 graphs can be quantised by the coin - position formalism similar to
the one introduced in Chapter 2, whereas walks on Class 2 graphs can be quantised
by a walk on the edges rather than the nodes18. However, we’re still restricted to
undirected graphs.

6.2. Szegedy Walks

It is known that discrete time Markov chains do not naturally quantise via the coin
formalism26. Szegedy26 came up with a formalism to quantise symmetric irreducible
Markov chains by using the bipartite double cover of the underlying graph (Figure 6.2).
This was then generalized to ergodic chains by Magniez et al.27. What follows is a
brief introduction to the generalized Szegedy walks.

Figure 6.2.: Duplication Process on a graph18. The nodes are copied, and edges are
drawn between the two sets if the pair of nodes had a connecting edge in
the original graph.
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6.3. Szegedy Search or the Quantum Hitting Time

6.2.1. Formalism

Let 𝑃 be the transition matrix of a reversible Markov chain. Let 𝑃 ∗ be the time
reversed Markov chain of 𝑃 .

For a state |𝜓⟩ ∈ ℋ, let Π𝜓 = |𝜓⟩⟨𝜓|. For a subspace 𝒦 of ℋ spanned by a set of
mutually orthogonal states {|𝜓𝑖⟩ ∶ 𝑖 ∈ 𝐼}, let Π𝒦 = ∑𝑖∈𝐼 Π𝜓𝑖

be the projector onto
𝒦 and ℛ𝒦 = 2Π𝒦 − Id be a reflection through 𝒦.

Let 𝒜 = Span(|𝑥⟩|𝑝𝑥⟩ ∶ 𝑥 ∈ 𝑋) and ℬ = Span(|𝑝∗
𝑦⟩|𝑦⟩ ∶ 𝑦 ∈ 𝑌 ) be subspaces of

ℋ = ℂ|𝑋|×|𝑋|, where

|𝑝𝑥⟩ = ∑
𝑦∈𝑋

√𝑝𝑥𝑦|𝑦⟩; |𝑝∗
𝑦⟩ = ∑

𝑥∈𝑋
√𝑝∗𝑦𝑥|𝑥⟩

where 𝑝𝑖𝑗, 𝑝∗
𝑖𝑗 are elements of 𝑃 , 𝑃 ∗ respectively, and 𝑋 is the set of nodes, 𝑌 is the

set of nodes after duplication.

Quantum Markov Chain

The quantised version of the Markov chain 𝑃 is defined to be the unitary opera-
tion 𝑊(𝑃) = ℛℬℛ𝒜 and is called the Szegedy walk. Where defined, the Szegedy
walk is equivalent to two steps of the Coined quantum walk28.

The Discriminant matrix

For an ergodic Markov chain 𝑃 with stable distribution 𝜋, we define

𝐷(𝑃 ) = diag(𝜋)1/2 ⋅ 𝑃 ⋅ diag(𝜋)−1/2

as the discriminant matrix.

6.2.2. Properties

1. On 𝒜 + ℬ, eigenvalues of 𝑊(𝑃) that have non-zero imaginary part are
𝑒±2𝑖𝜃1, … , 𝑒±2𝑖𝜃𝑙 , with same multiplicity.

2. On 𝒜 ∩ ℬ, 𝑊(𝑃) acts as the identity. The left (and right) singular vectors of
𝐷 with singular value 1 span this space.

3. On 𝒜 ∩ ℬ⟂ and 𝒜⟂ ∩ ℬ, the operator acts as −Id. The 𝒜 ∩ ℬ⟂ (resp. 𝒜⟂ ∩ ℬ),
is spanned by the set of left (resp. right) singular vectors of D

4. W(P) has no other eigenvalues on 𝒜 + ℬ; on 𝒜⟂ ∩ ℬ⟂ it acts as Id

6.3. Szegedy Search or the Quantum Hitting Time

Of the many ways to define the search algorithm (refer to Chapter 3 for an introduc-
tion) for Szegedy walks, we shall look at two protocols, one which is easy to understand
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6. Quantum Markov Chains

and the other easy to analyse. The original paper by Szegedy26 proposed the following
protocol -

1. Modify the classical Markov chain to make all the marked vertices sinks (Fig-
ure 6.3).

𝑝′
𝑥𝑦 = {𝑝𝑥𝑦, 𝑥 ∉ 𝐺

𝛿𝑥𝑦, 𝑥 ∈ 𝐺

2. Define 𝑊 ′(𝑃 ) as the quantum Markov chain by the usual protocol.
3. Define the initial state

|𝜓(0)⟩ = 1√𝑛 ∑
𝑥∈𝑋
𝑦∈𝑌

√𝑝𝑥𝑦|𝑥⟩|𝑦⟩

4. Finally, define the quantum hitting time such that

𝐹(𝑇 ) ≥ 1 − 𝑔
𝑛

where

𝐹(𝑇 ) = 1
𝑇 + 1

𝑇
∑
𝑡=0

∥|𝜓(𝑡)⟩ − |𝜓(0)⟩∥
2
; 𝑔 = |𝐺|

Figure 6.3.: Duplication Process of a graph with marked vertex 318. All edges going
outwards from 𝑥3 and 𝑦3 are broken, making the graph directed

Defined by this protocol, the quantum hitting time is quadratically smaller than the
classical hitting time26 for the 1D case.

A later modification27 defined the search operation via a Grover-like oracle. This was
easier to analyse, and the connection between the spectral gap of the discriminant
matrix (Section 6.2.1) and the quadratic speedup attained by the walk is clearer. We
leave the exact protocol to reference27, but only outline the steps.

1. Prepare the initial state |𝜋⟩|0𝑇 𝑘𝑠⟩, where

|𝜋⟩𝑑 = ∑
𝑥∈𝑋

√𝜋𝑥|𝑥⟩|𝑝𝑥⟩ = ∑
𝑦∈𝑋

√𝜋𝑥|𝑥⟩|𝑝𝑥⟩
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6.3. Szegedy Search or the Quantum Hitting Time

2. First apply the Grover oracle

𝒢(|𝑥⟩𝑑|𝑦⟩𝑑|𝑧⟩) = {−|𝑥⟩𝑑|𝑦⟩𝑑|𝑧⟩, if 𝑥 ∈ 𝐺
+|𝑥⟩𝑑|𝑦⟩𝑑|𝑧⟩, otherwise

3. Apply a phase estimation circuit to the quantum walk, repeated 𝑘 times.
4. Repeat steps 2 and 3 𝑇 times.
5. Observe the first register, by a projective measurement in the computational

basis. Denote by ̄𝑥
6. With high probability, output ̄𝑥 lies in 𝐺

If the eigenvalue gap of the Markov chain is 𝛿, and |𝐺|
𝑁 ≥ 𝜖 ≥ 0, the cost to perform

this circuit is of order ( 1√
𝜖𝛿 log 1√𝜖) calls to the walk operation27. Contrast this with

the classical search which requires 1
𝛿𝜖 steps of the Markov walk, we see the quadratic

speedup1.

Therefore, one can find the spectral gap 𝛿 of 𝑃 and compare the search speed of
two chains. This Szegedy formalism beautifully sets up the stage for a truly unitary
quantum reset quantum walk protocol which can be analysed for any graph structure
without having to resort to simulation techniques.

1Technically, this is not a quadratic speedup due to the extra log 1
𝜖 term, and it was only later

shown29 using a protocol of eigenvalue estimation to hold true for all ergodic chains with any
number of marked vertices
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7. Unitary Quantum Reset Quantum
Walk

Armed with the Szegedy formalism from the previous chapter, we can define the
unitary quantum reset quantum walk by quantising the stochastic reset classical walk
(Section 4.1.2). It is obvious that the stochastic reset classical walk is not symmetric
(𝑝𝑖0 ≠ 𝑝0𝑖∀𝑖 ≠ 0), so we cannot use the original Szegedy walk, but we can use the
generalized Szegedy formalism if we show that our process is ergodic.

7.1. Ergodicity of the Stochastic Reset Classical Walk

-5

-4

-3-2

-1

0

1

2

3 4

5

Figure 7.1.: Graph of the Stochastic Reset Classical Walk.
Green edges represent walk edges, and red edges
represent reset edges.

To show ergodicity, we need to show that the walk is irreducible, aperiodic and positive
recurrent.

Irreducibility follows from the irreducibility of the 1D walk (Appendix A) ∀𝛾 < 1. For
the trivial case of 𝛾 = 1, the chain is not irreducible, and we cannot use the Szegedy
formalism.

Aperiodicity (Appendix A) of the chain follows from the irreducibility of the chain
and aperiodicity of node 0 which is obvious due to the existence of the self loop.
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7. Unitary Quantum Reset Quantum Walk

Recurrence is obvious from 𝑝(𝑛)
00 ≥ 𝛾∀𝑖 and irreducibility. Positive recurrence is harder

to show, but we can solve the recurrence relation (Chapter 5).

Thus, the stochastic reset classical walk is ergodic and is a viable candidate for quan-
tisation via the Szegedy walk.

7.2. Implementation and Results

The implementation of the Szegedy walk is simplified by the use of QuantumWalk.jl30

and LightGraphs.jl31

First we define a function that returns the underlying graph and the transition ma-
trix

MyGraph(n, γ=0.5) =
let

temp = CycleGraph(n) |> adjacency_matrix |> collect
reset = zero(temp)
reset[:, n÷2] .= 1
stochastic = ((1 - γ) / 2) * temp + γ * reset
temp = sign.(temp + reset)
DiGraph(temp), sparse(transpose(stochastic))

end

Then we define and run the search algorithm.

function run_search_mygraph(n, δ, T, γ)
graph, stochastic = MyGraph(n, γ)
qwe = QWSearch(Szegedy(graph, stochastic), [n÷2 + δ])
first.(measure.(Ref(qwe), execute_all(qwe, T), Ref([n÷2 + δ])))

end

QuantumWalk.jl uses the Grover-like search algorithm28.

struct Simulation
n::Int64
δ::Int64
T::Int64
γ::Float64
data::Vector{Float64}
function Simulation(n, δ, T, γ)

new(n, δ, T, γ, run_search_mygraph(n, δ, T, γ))
end

end

mean_hit(s::Simulation) = mean(0:s.T, Weights(success(s)))
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7.3. Results

success(s::Simulation) = accumulate(s.data, init=0) do old, curr
(1-old) * curr + old

end

We can scan over 𝛾 ∈ [0, 1] and plot the instantaneous probability of measuring in 𝛿,
success probability and the mean hitting time in Figure 7.2.

Alternative Definition of the Mean Hitting Time

Although the definition of mean hitting time we have defined until now is only
valid for a measure and continue semi-quantum walk, we adopt a similar defini-
tion for this walk, only without actual measurements. In this section, (particu-
larly Figure 7.2 and Figure 7.3), we use a measure and rerun protocol, and define
the success probability 𝑆𝑛 on the basis of 𝐹𝑖 of the unmeasured quantum walk
until each time 𝑖 < 𝑛

res = map(0:0.01:1) do γ
Simulation.(100, 10, 100, γ)

end;

7.3. Results

7.3.1. Exceptional Quantum Walk on the Cycle

For the non reset (𝛾 = 0) case, we see that the success rate does not increase with
time. While this is initially surprising, this is a known result32, caused due to the fact
that the initial state evolves by phase flips, and the amplitude does not increase.

In the reset case, we see that the walk is no longer exceptional (at least, not in this
sense), which allows for an amplitude amplification on the marked node.

7.3.2. Mean hitting time vs 𝛾

Plotting the mean hitting time (the alternative definition (Section 7.2)) versus 𝛾 for
500 nodes and 500 steps, we get the curve in Figure 7.3.

As we can see, there is a clear non-monotonous effect of 𝛾 on the mean hitting time
of the walk. For values a bit more than 𝛾 = 0.5, we see that the mean hitting time is
much lower than that for the no reset 𝛾 = 0 case. Also of note is that as 𝛾 → 1 the
mean hitting rate approaches that of the no reset case.

Numerically, the exact time for mean hit changes according to the amount of time
that we run the simulation for. This is obvious from the way that the mean hit time
is calculated, where if the walk has not succeeded within the time of running the
simulation, we assume that it succeeds in the next step. However, we recover the
same qualitative curve for large number of steps.
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7. Unitary Quantum Reset Quantum Walk

(a) Probability of measuring in 𝛿 (b) Success Probability

(c) Mean hit time vs time

Figure 7.2.: Unitary Quantum Reset. These results are for a walk on 𝑛 = 100, 𝛿 =
10, 𝑇𝑚𝑎𝑥 = 100. This is a very small state space, run for a short time,
so results should only be considered qualitatively, but we can still see the
effect of unitary resetting on the success probability.
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7.3. Results

Figure 7.3.: Mean hitting time vs 𝛾 for the Unitary Quantum Reset. We observe a
non-monotonic curve for the mean hitting time, and a speed-up compared
to the non-reset case. This was run for 𝑛 = 500, 𝛿 = 50, 𝑇𝑚𝑎𝑥 = 1000

7.3.3. Eigenvalue analysis

In Section 6.3, we saw how the quadratic increase in the eigen-gap (Δ𝑃 ) leads to an
associated speedup in the search problem. Thus, if we can show that the eigen-gap
increases in for the reset case, we can show that the search protocol requires fewer
steps to complete. Furthermore, the space cost of the circuit goes as ⌈log2 ( 2𝜋

Δ𝑃 )⌉

We see that the transition matrix is extremely sparse, especially for larger system
sizes (goes as 𝒪(3𝑁), so the density goes as 𝒪(1/𝑁)), and that we do not require the
entire eigen spectrum to find the eigen-gap. Thus, we can use specialized methods
such as the Arnoldi method provided in Julia by the KrylovKit.jl33 package.

using KrylovKit

function eigen_gap(M)
v = real(eigsolve(M, 2, :LR)[1]) # get real(eigval)
v[1] - v[2]

end

γs = 0.:0.01:(1-0.01)

ΔP = eigen_gap.(getindex.(MyGraph.(512, γs), 2))

Plotting Δ𝑃 vs 𝛾 in Figure 7.4, we see that increasing 𝛾 leads to an equal increase in
Δ𝑃 , which corresponds to a faster convergence under the Grover-like search protocol.
Note however that we do not have a quantitative characterization of what the final
probability of success is. Therefore, despite the faster convergence, the non-monotonic
nature of the mean hitting time against 𝛾 can be explained by a loss in final success
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7. Unitary Quantum Reset Quantum Walk

(a) Eigen Gap (b) Space complexity

Figure 7.4.: Analysis by Eigen Gap of the Reset Walk. See that the eigengap increases
with 𝛾, and therefore, there is a corresponding decrease in the space
requirement of the protocol. 𝑛 = 500, 𝛿 = 50, 𝑇𝑚𝑎𝑥 = 1000

probability. The interplay of these two effects may be the cause of the existence of an
optimal reset parameter.

7.4. Discussions

A particular advantage of the Unitary quantum reset is that we are not limited to
only resets on 1D chains. We can define the unitary reset walk on any irreducible
graph that one can come up with, even periodic graphs, since resetting a periodic
graph leads to an aperiodic graph (Appendix D), and the corresponding walk can be
quantised by the Szegedy formalism.

While it is clear that there is an obvious speedup compared to the walk without reset,
we cannot directly compare these results with the stochastic reset quantum walk due
to the different definitions of 𝐹𝑛. The quantification of the quantum hitting time for
Szegedy walks is an area of very active research34. Another possible approach would
be via the semi-quantum Szegedy walk20. These methods have been left as a possible
future work.
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8. Summary and Future directions

See the following schematic as a summary of our work, with the highlighted sections
as new work.

Figure 8.1.: A summary of the thesis

We have reviewed the definitions of classical and quantum walks, and a measurement
based node hitting protocol. We further reviewed past work which fixed the transient
nature of the semi-quantum walk by a classical (possibly stochastic) resetting protocol,
leading to 0 asymptotic failure rates. Furthermore, we motivated the need for a true
quantum resetting protocol.

We first proposed a quantum resetting protocol motivated by the superposition of
the shift operations in the coined quantum walk, and produced a preliminary com-
putational analysis. While we were not able to show conclusively an advantage over
the classical reset, there is still a possibility that a speedup can be achieved for other
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8. Summary and Future directions

ranges of parameters. This protocol however became unwieldy to handle due to its
complexity, and suggested a need for a unitary quantum reset.

We then proposed a unitary quantum reset by directly quantising the classical reset
classical walk via the Szegedy walk formalism, which was also introduced. By running
a Grover-like search protocol, we were able to show that the unitary reset quantum
walk on the 1D chain does show a small decrease in the mean hitting time compared
to the quantum walk for certain ranges of the reset parameter. Furthermore, we show
that there is a definite speedup and a reduction in the computational space required
in the search protocol via eigenvalue analysis, and propose that the reduction in the
mean hitting time may be due to a corresponding reduction in the success of the
protocol.

8.1. Future directions

We propose following questions for future work.

8.1.1. Quantum Reset

Does the quantum reset protocol show speedup even for other parameter ranges? Is
there a framework to analyse the convergence time of the quantum resetting protocol
and the probability of success? Can we propose a Grover-like search algorithm? What
effect does the quantum resetting have on such a protocol?

8.1.2. Unitary Reset

We have left the analysis of the probability of success for the unitary quantum reset
Grover-like search protocol for future work. Since the unitary quantum reset is a
quantum walk, how does the semi-quantum version of this walk behave like? The
unitary quantum reset protocol is not limited to the 1D chain, or even lattice like
structures. Do we still see speedups for other graph structures? Finally, can we apply
the classical reset to the unitary quantum reset walk to gain a speedup from both
kinds of resetting?
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A. Markov Chains

The following are some definitions related to Markov chains, which can be found in
any introductory textbook to the topic1.

Definition: Communicating Nodes

States 𝑖, 𝑗 ∈ 𝑆, are connected if ∃𝑛 > 0, 𝑚 > 0|𝑃 𝑛
𝑖𝑗 > 0 and 𝑃 𝑚

𝑗𝑖 > 0. Note that
this is an equivalence relation.

Definition: Closed Communicating Class

If 𝐶 is such that ∑𝑗∈𝐶 𝑝𝑖𝑗 = 1∀𝑖 ∈ 𝐶, then it is called a closed communicating
class.

Definition: Irreducibility

If a chain has only one closed communicating class, it is called irreducable.

Definition: Recurrence

If 𝑖 ∈ 𝑆, ∑∞
𝑛=1 𝑃 𝑛

𝑖𝑖 → ∞, then the state is called recurrent. Equivalently,
∑𝑛 𝐹𝑛 → 1 for recurrent nodes. If a chain is irreducible and one of its states is
recurrent, all its states are recurrent, and thus the chain is called recurrent. If a
chain is recurrent, then it has a stable measure 𝜋 such that 𝑃𝜋 = 𝜋. If 𝜋 can be
normalized to a stable distribution, the chain is called null recurrent.

Definition: Stopping time

A random variable 𝑇 ∶ Ω → 0, 1, ... ∪ ∞ is a stopping time the event {𝑇 = 𝑛}
depends only on 𝑋0, 𝑋1, … 𝑋𝑛 for 𝑛 = 0, 1, 2, …
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A. Markov Chains

Definition: Periodicity

For a state 𝑖 ∈ 𝑆, the Period is gcd{𝑛 ≥ 0 ∶ 𝑝(𝑛)
𝑖𝑖 > 0}. If the Period of the state

is 1, then it is called aperiodic. For an irreducible chain, if one state is aperiodic,
then all states are aperiodic, and the chain is referred to as aperiodic.
The state space of all irreducible chains can be partitioned into 𝑝 disjoint sets

𝑆 = 𝐶0 ∪ 𝐶1 ∪ ⋯ ∪ 𝐶𝑑−1

and set 𝐶𝑛𝑑+𝑟 = 𝐶𝑟, such that

1. 𝑝(𝑛)
𝑖𝑗 > 0 only if 𝑖 ∈ 𝐶𝑟 and 𝑗 ∈ 𝐶𝑟+𝑛 for some 𝑟.

2. 𝑝(𝑛𝑑)
𝑖𝑗 > 0 for all sufficiently large 𝑛, for all 𝑖, 𝑗 ∈ 𝐶𝑟, for all 𝑟.

Time reversed Markov chain

For a Markov chain 𝑃 with stable distribution 𝜋, 𝑃 ∗ given by 𝑝∗
𝑗𝑖 = 𝜋𝑖𝑝𝑖𝑗

𝜋𝑗
is the

transition matrix of the time reversed Markov chain.

Definition: Ergodic Markov chain

A positive recurrent, aperiodic chain is called an ergodic chain.
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B. Measured Quantum Walk is
Markov

Let 𝑋𝑖 be the 𝑖th readout in the measured quantum walk protocol. This implies that
immediately after the 𝑖th measurement, the state of the walker is |𝑋𝑖⟩. After 𝜏 steps,
the walker is in state 𝐸𝜏 |𝑋𝑖⟩. The probability of measuring the walker in 𝑋𝑖+1 is
given by |⟨𝑋𝑖+1|𝐸𝜏𝑋𝑖⟩|2. Thus, 𝑃(𝑋𝑖+1 = 𝑋𝑖+1|𝑋𝑖, … , 𝑋0) = 𝑃(𝑋𝑖+1 = 𝑋𝑖+1|𝑋𝑖),
which implies that the readouts in the measured quantum walk protocol is a Markov
process.
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C. Quantum Reset is a CPTP map

We prove that the set of Kraus operators defined in Chapter 5 form a CPTP map.

We are required to show that

∑
𝑖

ℰ†
𝑖 ℰ𝑖 = 1

We start by evaluating

ℰ†
𝑖 ℰ𝑖 = |0⟩⟨0| ⊗ 𝐼2 ⊗ ℛ†

𝑖 ℛ𝑖 + 1
𝑁 |1⟩⟨1| ⊗ 𝐼𝑛 = |0⟩⟨0| ⊗ 𝐼2 ⊗ |𝑖⟩⟨𝑖| + 1

𝑁 |1⟩⟨1| ⊗ 𝐼𝑛

Summing over 𝑖

∑
𝑖

ℰ†
𝑖 ℰ𝑖 = |0⟩⟨0| ⊗ 𝐼2 ⊗ 𝐼𝑛 + |1⟩⟨1| ⊗ 𝐼2 ⊗ 𝐼𝑛 = 𝐼4𝑛

We are done.
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D. Proof of Reset Markov Chains
Being Aperiodic

Given an irreducible Markov chain with transition matrix 𝑃 with state space 𝑆, 𝑠𝑟 ∈ 𝑆
and 0 < 𝛾 < 1, define the reset Markov chain to 𝑠𝑟 w.p 𝛾 as the Markov chain

given by the transition matrix 𝑃 ∗ = (1 − 𝛾)𝑃 + 𝛾𝑅, where [𝑅𝑖𝑗] = {1, 𝑗 = 𝑠𝑟
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

on state space 𝑆. Note that this is a well-defined irreducible Markov chain.

Let the period of 𝑃 ∗ be 𝑑. Therefore, we can partition the state space into disjoint
sets.

𝑆 = 𝐶0 ∪ 𝐶1 ∪ ⋯ ∪ 𝐶𝑑−1

and set 𝐶𝑛𝑑+𝑟 = 𝐶𝑟, such that 𝑝∗(𝑛)
𝑖𝑗 > 0 only if 𝑖 ∈ 𝐶𝑟 and 𝑗 ∈ 𝐶𝑟+𝑛 for some 𝑟. Let

𝑠 ∈ 𝐶𝑘, 𝑠 ≠ 𝑠𝑟 for some 𝑘. Since 𝑝∗
𝑠𝑠𝑟

= 𝑝𝑠𝑠𝑟
+ 𝛾 > 0, 𝑠𝑟 must lie in 𝐶𝑘+1. Since this

holds for all 𝑘, there can at most be two 𝐶s, one with 𝑠𝑟 and the other with the rest
of the nodes. Finally, if 𝑝𝑖𝑗 > 0 for any 𝑖, 𝑗 ∈ 𝑆/{𝑠𝑟}, they must lie in different classes,
or there must be only one class. Since the former would create a contradiction, we
must have that 𝑑 = 1 and 𝑃 ∗ is aperiodic.

If no such 𝑖, 𝑗 exist, then 𝑃 must be a star network. While in the current formalism,
the self loop at 𝑠𝑟 renders the proof almost trivial, we have provided a proof which
shows aperiodicity even if 𝑃∗ be modified to remove the self loop. In such a case,
barring the star network, all other irreducible graphs follow this proof.
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