

Quantum Resetting of Walks
An exploration of the effect of stochastic and

quantum resetting on classical and quantum walks

Dhruva Sambrani, supervised by Manabendra Nath Bera
Dept of Physics, IISER - Mohali

Quantum Resetting of Walks
§0 Introduction
§1 Classical Walks

Definition
Multiple Walkers
Probability mass function
Properties of the walk

§2 Quantum Walks
Introduction
Coined Quantum Walk for 1D Chain
Computational Implementation

Matrix formalism
Circuit Formalism

Nodes
Coin
Edges and Shifts
Coin operator
Evolve Circuit
Prepare circuit

Properties of the walk
§3 Markov Processes and Hit Rates

Search Problems
Formalism

Readout in Walks
Markov Chains and Walks

Irreducibilty and Recurrence
Survival probability

Observations
§4 The Solution: Resetting

Formalism
Recurrence and Resetting

Stochastic Reset Classical Walk
Stochastic Reset Quantum Walk

Effect of Resetting on First Hit problem
Observations

The Problem in the Solution
§5 REDACTED
Future Directions and Methods
References

Table of Contents

§0 Introduction
Random walks are a commonly used tool in the arsenal of algorithms on Classical Computers to solve a variety of problems
which do not have a known easy solution. The power of such methods can generally be attributed to the fact that while the
space of possible solutions is vast, we generally only need to sample few solutions to come to a close solution. This power has
been routinely exploited in the past to sample from Markov Chains using the MCMC algorithm which can be found in any
introductory textbook [1] of markov processes, and they have recently been used in the fields of Financial engineering [2] , fluid
mechanics [3] , fitting blackhole images [4] and most famously in the Los Alamos project [5] .

With the advent of quantum algorithms, quantum walks have arisen as an obvious extension of classical walks in the quantum
domain. The applications of quantum walks are just as many: ANN training [6] , Random Number Generation [7] , List coloring
(Grover) [8] , collision finding [9] , link prediction [10] . There has even been a recent foray into classifying and using a quantum-
classical walk to speed up certain classical algorithms, namely the Google PageRank Algorithm [11] . The increased interest in
quantum walks can be attributed to the quadratic speed up which it grants the solution a-la the Grover algorithm, which itself
can be considered as a Quantum Walk [12] . While there is also interest in studying the physical implementation of the walks,
we do not concern ourselves with these questions, since experimentalists are much better equipped to ask them.

In this report, we will define both the classical (Section 1) and quantum (Section 2) walks along with certain properties that are,
while interesting in their own regard, problematic for certain scenarios (Section 3). Then, we look at previous attempts at
finding a solution for this (Section 4), and discuss the shortcomings of the solution. Finally, we introduce a new mechanism
(Section 5) which may even eliminate the shortcomings, whose study will be continued in the second part of the Thesis Project.

Along with the theory, certain aspects of the implementation of the walks computationally are also added as necessary. This is
done inline instead of in an appendix, which is the norm, since the author believes that such a presentation solidifies the
readers' understanding of both, the model and the implementation.

§1 Classical Walks
Classical random walks are defined on a graph, with the walker being on some initial node with a probability , and
"hopping" from node to in each time step with a probability given by . We can thus define a transition matrix

 which is row stochastic. Thus the probability mass function of the walker at timestep is given by . Of
course, the exact structure of the graph and the probabilities will decide the properties of the walk and there exists a vast
amount of literature devoted to this analysis.

i0 λi

i j pij

P := Pij = pij t λP t

We however will restrict our discussion to the symmetric walk on the 1D chain. This is often called the 1D-Simple Symetric
Random Walk, and defined in the following way.

Definition
Consider an infinite 1 D chain, with nodes marked by .Z

Define the probability of hopping from node to node

And the initial state as

Thus, the hopper can only move to it nearest neighbors, starting from node 0.

Note that , which means that the walk is a markov chain.

i j

pij = {
1/2 |i − j| = 1
0 otherwise

λij = {
1 i = 0
0 otherwise

P(Xt = i| HISTORY) = P(Xt = i|Xt−1)

Multiple Walkers
The SSRW is clearly a stochastic process, and each run of this process will lead to different paths being chosen by the walker,
and we are my interested in what the walker does on an average rather than what happens in a particular instance. Thus, we
can observe multiple walks, and plot their paths to visualize how they would spread.

In order to simulate a walk, we sample with equal probability, and add it to the previous position to get .
Note . Thus, this is equivalent to sampling from [1, -1] uniformly t times and performing a cumulative sum. For n
walkers, we can sample (t, n) such random numbers, and do a cumulative sum along the first dimension.

Xi ∈ {−1, 1} Si−1 Si

S0 = 0

bm = cumsum(rand([1, -1], (200, 15)), dims=1);⋅

Probability mass function
Another common way to visualize the walk is to plot the probability that the walker is on node at time . For this, we simply
define the transition matrix and appropriately and find . Note however that the transition matrix for the SSRW is
Tridiagonal with the Upper and Lower diagonals as 0.5 and the diagonal as 0, and there exist efficient storage and
multiplication routines. Also, since we can only store a finite matrix, we limit the walk to some size. At the boundaries, we
simply allow open conditions, because this is the easiest to implement.

i t

λ λP t

Properties of the walk
There are certain properties of the walk that are interesting for the problem we pose in the subsequent sections. Primarily, we
are interested in the mean, standard deviation and recurrence of the graph.

The probability that a walker is on node at time is given by the expression

This equation is valid only if is even and . If is odd or , the probability is zero

It should be obvious from the even symmetry of that the mean . This comes from the fact
that the walk is symmetric.

The standard deviation of the walker position [13]

n t

p(n, t) = (
t

t+n
2

)
1

2t

t + n n ≤ t t + n n > t

p(n, t) μ(t) = ∑n np(n, t) = 0

σ(t) = √⟨n2⟩ − ⟨n⟩2 = √∑n n2p(n, t) = √t

cps, cps_t = let
t = 21
U = SymTridiagonal(fill(0., 31), fill(0.5, 30))
λ = fill(0., 31)
λ[16] = 1
ps = accumulate(1:t, init=λ) do old, _

U * old
end[t÷3:t÷3:t], t÷3

end;

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

§2 Quantum Walks

Introduction
Quantum walks are defined analogous to the classical walks.

First, our walker is quantum mechanical, and the position of the walker can be a superposition of the nodes. Thus, we define the
state of the walker to be a superposition of the node states .

Let this Hilbert space be denoted as . The projection of the state on some node given by is understood as
the probability that the walker will collapse to the state on measurement.

To define the evolution of the node, we look back at the transition matrix . Thus we would define an operation in the
following manner -

and the walk proceeds by repeated application of . While this expression is enough to define the walk, it is not immediately
clear how one would explicitly realize such an operation. There are multiple formalisms to define such walks, but we shall use
the coined quantum walk formalism which is very natural for regular graphs, as is the case for the 1D chain. Note that for the
symmetric walks on nD lattices, like the 1D chain, the tight-binding model is already a well understood continous time
quantum walk. However, we prefer a discrete time formalism.

|i⟩

|ψ⟩ = ∑
i

ci|i⟩

HW i |⟨i|ψ⟩|2 = |ci|2

|i⟩

Pij

O|i⟩ = ∑
j

√pij|j⟩

O

Coined Quantum Walk for 1D Chain
For the 1D chain, given a specific node, there are only 2 other nodes connected to it. Thus, we can add a 2 level system, which
"decides" which node the walker jumps to. More formally, we attach a 2 level qubit system to the walker whose bases are
denoted by and . Let us denote this hilbert space as

Thus, we can define the shift operation as

How would we define such an operation explicitly?

Where and are defined as

Note that operates on , whereas and operate on only.

The superposition in the two choices at each step is recovered by putting the coin into a superposition of its basis states. This is
achieved via a coin operator, which is commonly defined as , where is the single qubit hadamard operator.

|0⟩ |1⟩ HC

S|0⟩|i⟩ = |0⟩|i − 1⟩

S|1⟩|i⟩ = |1⟩|i + 1⟩

S = |0⟩⟨0| ⊗ SL + |1⟩⟨1| ⊗ SR

SL SR

SL|i⟩ = |i − 1⟩, SR|i⟩ = |i + 1⟩

S HC ⊗ HW SL SR HW

H ⊗ I H

Let us explicitly write down two steps of the walk

Repeated application of Coin Operator

Note specifically the repeated application of the coin operator. If the coin operator is not applied in step 3, our state will end
up in which is not what we wanted. This is because the application of the controlled shift operation

entangles the coin and the walker systems, and thus there is no superposition in each term of the system

H ⊗ I(|0⟩|0⟩) =
|0⟩|0⟩ + |1⟩|0⟩

√2

S(
|0⟩|0⟩ + |1⟩|0⟩

√2
) =

|0⟩| − 1⟩ + |1⟩|1⟩

√2

H ⊗ I
|0⟩| − 1⟩ + |1⟩|1⟩

√2
=

|0⟩| − 1⟩ + |1⟩| − 1⟩ + |0⟩|1⟩ − |1⟩|1⟩

2

S
|0⟩| − 1⟩ + |1⟩| − 1⟩ + |0⟩|1⟩ − |1⟩|1⟩

2
=

|0⟩| − 2⟩ + (|1⟩ + |0⟩)|0⟩ − |1⟩|2⟩

2

1
√2

(|0⟩| − 2⟩ + |1⟩|2⟩)

Computational Implementation
There are 2 ways to implement the Quantum walks, which are both interesting in their own ways. But the foremost thing to
tackle would be how to store an infinite vector and an infinite dimensional operator. Since we cannot do either of these simply,
we instead limit our walk to a node space of , and use periodic boundary conditions.

Other Boundary Conditions

One could pick other boundary conditions too, such as the open or the absorbing boundary conditions, but both of these BCs
lead to nonunitary operations, which complicate the definition and application of the gate.

2n

Matrix formalism
The first and more immediate method is to simply write down the matrix equivalent of the above operations. For the
visualization of the implementations, we will assume that the walk occurs in a 1 D chain of size 4

The coin is prefered to be in the when we start so that the walk proceeds symmetrically [13]1
√2

(|0⟩ + i|1⟩)

The coin operator is trivial to write,

H
KrausOperators([8×8 SparseMatrixCSC{Float64, Int64} with 16 stored entries:

 0.707107 ⋅ ⋅ ⋅ 0.707107 ⋅ ⋅
 ⋅ 0.707107 ⋅ ⋅ ⋅ 0.707107 ⋅
 ⋅ ⋅ 0.707107 ⋅ ⋅ ⋅ 0.70710
 ⋅ ⋅ ⋅ 0.707107 ⋅ ⋅ ⋅
 0.707107 ⋅ ⋅ ⋅ -0.707107 ⋅ ⋅
 ⋅ 0.707107 ⋅ ⋅ ⋅ -0.707107 ⋅
 ⋅ ⋅ 0.707107 ⋅ ⋅ ⋅ -0.70710
 ⋅ ⋅ ⋅ 0.707107 ⋅ ⋅ ⋅

 =

init_coin = 1/√2 * (ket(1,2) - 1im * ket(2,2));⋅

H = KrausOperators([sparse(hadamard(2)⊗I(4))])⋅

The left and right shift operators can be defined in the following manner

(4×4 Matrix{Float64}:
 0.0 0.0 0.0 1.0
 1.0 0.0 0.0 0.0
 0.0 1.0 0.0 0.0
 0.0 0.0 1.0 0.0

, 4×4 Matrix{Float64}:
 0.0 1.0 0.0 0.0
 0.0 0.0 1.0 0.0
 0.0 0.0 0.0 1.0
 1.0 0.0 0.0 0.0

)

Thus the shift operator is defined as

S
KrausOperators([8×8 SparseMatrixCSC{ComplexF64, Int64} with 8 stored entries:

 ⋅ 1.0+0.0im ⋅ ⋅ … ⋅ ⋅
 ⋅ ⋅ 1.0+0.0im ⋅ ⋅ ⋅
 ⋅ ⋅ ⋅ 1.0+0.0im ⋅ ⋅
 1.0+0.0im ⋅ ⋅ ⋅ ⋅ ⋅
 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1
 ⋅ ⋅ ⋅ ⋅ … ⋅ ⋅
 ⋅ ⋅ ⋅ ⋅ 1.0+0.0im ⋅
 ⋅ ⋅ ⋅ ⋅ ⋅ 1.0+0.0im

 =

Thus, we can repeatedly apply to the initial state and accumulate the results.S ∘ H

Now we can plot the readout statistics by partially tracing out the coin, and plotting the diagonal. The following is a walk on 61
nodes.

begin
R = collect(Tridiagonal(fill(1., 3), zeros(4), zeros(3)))
R[1, end] = 1
L = collect(Tridiagonal(zeros(3), zeros(4), fill(1., 3)))
L[end, 1] = 1
R, L

end

⋅
⋅
⋅
⋅
⋅
⋅
⋅

S = KrausOperators([sparse(proj(ket(1, 2)) ⊗ L + proj(ket(2, 2)) ⊗ R)])⋅

begin
init_state = proj(init_coin ⊗ ket(2,4))
ψ = [[init_state]; accumulate(1:40, init=init_state) do old, _

H(S(old))
end]

end;

⋅
⋅
⋅
⋅
⋅
⋅

Quantum Walks are not random

Note, this is a single walker, not an ensemble of walkers as is the case in classical random walks. Quantum walks (without
measurement), are completely deterministic.

Circuit Formalism
While the matrix definition of the Quantum Walks are easy to formalize and understand, finally these need to be simulated on
some sort of device which may require us to reformulate it. Further, we try to ensure that the reformulation allows for easy
additions of other dynamics which we may want to study.

The advantages of using a Quantum Computer over a classical computer for a quantum walk should be obvious. The problem
however is that the quantum walk is over a high dimensional space, and we rarely have access to such high dimensional
systems which we can control easily. Instead we need to simulate such a system using the accessible 2 level systems available in
quantum computers.

Let us define the basic components of our walk.

Nodes
Each numbered node is then converted into its 2-ary length representation denoted by . is chosen such that
>
These bitstrings are encoded into an qubit computer, where each basis state in the computational basis corresponds
to the node with the same bitstring.
The amplitude of a particular basis corresponds to the amplitude of the walker in the corresponding node

n (xi) n 2n

N

n

Coin
The Walk Coin is a two level system, as usual

Edges and Shifts
Since shifts are only to adjacent nodes, the left (right) shift is equivalent of subtracting (adding) 1 from the bitstring of
the state.
From the Quantum adder circuit, we can set one input to be and reduce the circuit to get the Quantum AddOne
circuit. Shown below is the circuit for

(0)n−11

n = 4 (N = 16)

We can similarly construct the SubOne circuit, but that is simplified by noting that the subone circuit is simply the
inverse of the addone circuit, and this corresponds to just inverting the circuit (all gates are unitary).

leftshift (generic function with 1 method)

The controlled shift operation is encoded as

begin
rightshift(n) = chain(

n,
map(n:-1:2) do i

control(1:i-1, i=>X) end...,
put(1=>X)

)
leftshift(n) = rightshift(n)'

end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

shift (generic function with 1 method)

Coin operator
We can add the coin operator as usual

coin (generic function with 2 methods)

Evolve Circuit
Putting these together, we get the operation for a single step of the evolution as below. Note that the top qubit rail is that of the
coin, and the rest are those of the simulation of the system.

This circuit can be repeated to acheive any number of steps.

shift(n) = chain(n+1,
control(1, 2:n+1 => rightshift(n)),
put(1 => X),
control(1, 2:n+1 => leftshift(n)),
put(1 => X),

)

⋅
⋅
⋅
⋅
⋅
⋅

coin(n, c=Yao.H) = chain(n+1, put(1 => c))⋅

evolve (generic function with 1 method)

Prepare circuit
While we can already simulate the walk, an very useful helper function that we can define is the prepare circuit.

Quantum registers are often initialized to the 0 state, and it is also easy to restart the walk from the 0 state. However, we often
like to start the walk in the center of the chain instead of at node 0. Also, the coin is prefered to be in the when

we start so that the walk proceeds symmetrically [renato: pg 30] .

Hence, to perform these steps, we define the following prepare subroutine.

1
√2

(|0⟩ + i|1⟩)

prepare (generic function with 1 method)

Similarly plotting as before,

evolve(n) = shift(n) * coin(n)⋅

prepare(n) = chain(
n+1,
put(1=>Yao.H),
put(1=>Yao.shift(-π/2)),
put(n+1=>X)

)

⋅
⋅
⋅
⋅
⋅
⋅

Thus we can see that the two formalisms are the same.

Properties of the walk
Similar to the classical random walk, the mean .

However, a more interesting feature is that the standard deviation [13] . Compare this with the classical random
walk, the quantum walk has a quadratic speed up. This the reason for the quadratic speedup commonly seen in the Grover
search and other monte carlo problems.

μ(t) = 0

σ(t) = 0.54t

§3 Markov Processes and Hit Rates

Search Problems
A common application of walks is in search problems. In search problems, we generally have a black box function

where which is the search space. We are interested in developing an algorithm to output some by
querying . This problem however is much more complex, as we require some sort of "learning" by the walker to reach the
output nodes. Instead, we look at a simpler problem of hitting a selected target node. Naturally, we not only want high success
rates, but we also want low mean hit times.

f(x) = {
0 x ∈ G

1 x ∈ GC

G ∪ GC = S x ∈ G

f

Formalism
Define the following

Denote the readout at the nᵗʰ measurement (at) as .
Select a target node
Probability of first hit in steps
Mean hit time
Success probability in steps
Survival probability Failure probability
Asymptomatic versions of these terms are given by taking

t = nτ Xn

δ

n Fn = P(Xn = δ|Xi ≠ δ∀i ∈ [0, n − 1])

⟨tS⟩ = ∑∞
i=0 iFi

n Sn = ∑
n

i=1 Fi = P(∃i ∈ [0, n]|Xi = δ)

= = Sn = 1 − Sn

n → ∞

Readout in Walks
To identify whether a walker has hit the target node, we need to track the location of the walker as it evolves in time.

For the classical case, this poses no problem, as measurement does not disturb the system. In the quantum case however, we
need to be a bit more careful.

A constantly measured walker will freeze the dynamics of a quantum walker. This is known as the Quantum Zeno effect. The
solution for this is to measure after every steps.

τ=1

The quantum case reduces the discrete time quantum walk to a classical random walk with

Let us plot the readout trajectories of walkers with different paramters

τ

τ = 1 τ = 1

Note the very clear difference in the spread between the classical readout and the quantum readout for same . Similarly note
the spread between the quantum readouts for different s.

τ

τ

Markov Chains and Walks
In the classical case, it is clear that the 1D SSRW is a markov process. In the appendix, we show that the quantum walk with
measurement is also a markov process.

Consequently, we can use certain results from the theory of Markov processes to compare the two walks.

Irreducibilty and Recurrence
Under the usual definition of irreducibility [1] ,

Definition: Irreducibility

If , then the chain is called irreducible.

It is trivial that in the 1D chain, satisfies the condition.

Following [1] ,

Definition: Recurrence

If , then the state is called recurrent. Equivalently, for recurrent nodes. If a chain is
irreducible and one of its states is recurrent, all its states are recurrent and thus the chain is called recurrent.

It is a well known fact that the 1D SSRW is recurrent. It is just as well known a fact that the 3D SSRW is transient [1] . In the
quantum case, it is not as clear whether any of the available definitions of the quantum markov process is more or less better
than the others. Thus, the transience of quantum walks depends on the exact definition we are working under. In our definition
however, it can be shown using symbolic computation [14] that the walk is indeed transient. This poses an interesting problem.

∀i, j ∈ S, ∃n, m|P n
ij > 0, P m

ji > 0

n = m = |i − j|τ

i ∈ S,∑
∞
n=1 P n

ii → inf ∑n Fn → 1

Survival probability
We can thus measure and plot the curve for the quantum and classical walks to compare the efficiency of these walks in
the first hit problem.

Continuous Walks

Note that the following results are for continuous time walks solved numerically using the analytical solution. Such a result
for discrete time walks is harder due to the nature of the walk. However we intend to reproduce the analytical results for the
discrete time case too.

Computationally too, due to the finite size of the walk space, the walk automatically becomes recurrent. However one can
still observe qualitatively similar plots. Such a plot can be found in the next section.

Below are the plots from [15] for the quantum and classical walks.

Sn − n

Success Probability vs Time

Observations
The quantum walk has a fast rise in the initial phase but saturates at ~0.1
The classical walk has a slow rise, but eventually reaches 1

So while the quantum walker is faster, the walk is now transient, which leads to a non zero asymptomatic failure rate.

Clearly this is a problem. What this means physically is that for the first hit problem, if the quantum walk hits the target node,
it does so faster than the classical walk, but a majority of the times, it doesn't hit the target node at all.

§4 The Solution: Resetting
The crux of the matter is this. The quantum walk is fast in the initial phase, but eventually saturates asymptotically to a success
rate of < 1. This means that some of the walkers hit the target, and others do not. If that is the case, is it possible to restart the
walk when it starts saturating? That is, can we restart the walk for the walkers that have not yet hit the target after time?

For such dynamics, we will need to reformulate the walk slightly.

rτ

Formalism
A reset of the walker implies that the walker returns to its initial state, and the walk dynamics continue from there.

However, we can vary when we reset the walker by considering multiple reset processes. A common reset process is the
Poissonian reset, where the reset times are modelled as a poissonian process with some parameter . This is particularly
convenient in the case of continuous time walks.

r

For the discrete walks, the geometric distribution is more natural.

that is, at each step, there is a probability of reset.

This results in different dynamics, which can be seen in subsequent subsections, but it has an equally drastic effect on the
recurrence of the walk.

t ∼ Geom(γ)

γ

Recurrence and Resetting
In the geometric resetting case, it is clear that , and hence which diverges as . Thus
regardless of the initial walk, the final walk will definitely be recurrent. Thus the motivation for resetting the quantum walk
which is transient should be immediately clear.

P n
00 ≥ γ ∑n P n

00 ≥ ∑n γ n → ∞

Stochastic Reset Classical Walk
In the classical case, the transition probabilities change to

pij =

⎧
⎨
⎩

(1 − γ) ⋅ 1/2 |i − j| = 1
γ j = r0

0 otherwise

Stochastic Reset Quantum Walk
In the quantum case, the evolution changes from unitary dynamics to a nonunitary CPTP map of the following form.

where is the walk unitary.

OSR(ρ) = (1 − γ) (UρU †)+ γ|r0⟩⟨r0|

U

Effect of Resetting on First Hit problem

For this analysis, we will consider the simpler "sharp reset" formalism, where the reset time is sampled from a distribution

Thus we restart after measurement events (at). Once we understand the effect of this kind of reset, gaining intuition
for reset times sampled differently is easier.

tr ∼ δ(t − rτ)

r t = rτ

The success probability vs time can now be plotted [15] for the reset case.

Reset Success Probability vs Time

Now we see that the success probability is drastically increased for both cases, but due to the ballistic nature of the quantum
walk, we see that the reset quantum walk performs much better than the classical walk.

For a better understanding of the performance of the reset quantum walk with reference to changing reset rates () and
measurement times (), we can plot [15] the mean first hitting time vs these parameters.

r

τ

Observations
Deterministic restart leads to zero asymptomatic failure rate
Eager restarting leads to walker never reaching , reducing success rates drastically
Cautious restart reduces the effect of restart, reducing success rates.
There exists an optimal , but this needs to be optimized, which is non trivial for general and graph structures.

Can stochastic restarting be better than sharp reset?

No, because even if , due to the non-monotonic nature of the curve

δ

r τ

⟨r⟩ = roptimal ⟨tf⟩ > ⟨tf⟩optimal

The Problem in the Solution
As discussed before, reset rates which are very high or low can end up being detrimental to the success times of the walk.
Secondly, there is no clear path as to how to optimize the reset parameter for arbitrary graph structures.

Just as we harnessed the power of quantum superposition to speed up the walk, can we similarly have a superposition between
the reset and evolution?

§5 REDACTED

Future Directions and Methods
We intend to use computational simulations, symbolic analysis (possibly aided by a computer), along with a more general
model for resetting, drawing inspiration from reference [17] to analyse this new formalism to see whether there are any benefits
in the definition of the problem.

REDACTED

We will use, as used until now too, the Julia Language [18] and Julia packages: Yao.jl [19] , QuantumInformation.jl [20] , Pluto.jl
[21] , Luxor.jl [22] and PlutoReport.jl [23]

References

1. [norris_markov_1998]: [1998] Markov chains; J. R. Norris; DOI:
2. [glasserman_monte_2004]: [2004] Monte {Carlo} methods in financial engineering; Paul

Glasserman; DOI:
3. [griffin_investigation_2019]: [2019] Investigation of quantum algorithms for direct

numerical simulation of the {Navier}-{Stokes} equations; Kevin P Griffin, Suhas Jain Suresh,
Tim J Flint, Wai Hong Ronald Chan; DOI:10.13140/RG.2.2.22657.81762

4. [psaltis_markov_2022]: [2022] Markov {Chains} for {Horizons} {MARCH}. {I}. {Identifying}
{Biases} in {Fitting} {Theoretical} {Models} to {Event} {Horizon} {Telescope}
{Observations}; Dimitrios Psaltis, Feryal Özel, Lia Medeiros, Pierre Christian, Junhan Kim, Chi-kwan
Chan, Landen J. Conway, Carolyn A. Raithel, Dan Marrone, Tod R. Lauer; DOI:10.3847/1538-4357/ac2c69

5. [metropolis_beginning]: [] The {Beginning} of the {Monte} {Carlo} {Method}; Nick
Metropolis; DOI:

6. [de_souza_quantum_2019]: [2019] Quantum {Walk} to {Train} a {Classical} {Artificial}
{Neural} {Network}; Luciano S. de Souza, Jonathan H.A. de Carvalho, Tiago A.E. Ferreira;
DOI:10.1109/BRACIS.2019.00149

7. [bae_source_2021]: [2021] Source {Independent} {Quantum} {Walk} {Random} {Number}
{Generation}; Minwoo Bae, Walter O. Krawec; DOI:10.48550/ARXIV.2102.02252

http://localhost:1234/edit?id=4a99293c-73d1-11ed-2440-8726108cd05a
http://localhost:1234/edit?id=4a99293c-73d1-11ed-2440-8726108cd05a
https://doi.org/10.13140/RG.2.2.22657.81762
https://doi.org/10.3847/1538-4357/ac2c69
http://localhost:1234/edit?id=4a99293c-73d1-11ed-2440-8726108cd05a
https://doi.org/10.1109/BRACIS.2019.00149
https://doi.org/10.48550/ARXIV.2102.02252

8. [mukherjee_grover_2022]: [2022] A {Grover} {Search}-{Based} {Algorithm} for the {List}
{Coloring} {Problem}; Sayan Mukherjee; DOI:10.1109/TQE.2022.3151137

9. [bonnetain_finding_2022]: [2022] Finding many {Collisions} via {Reusable} {Quantum}
{Walks}; Xavier Bonnetain, André Chailloux, André Schrottenloher, Yixin Shen; DOI:

10. [goldsmith_link_2022]: [2022] Link prediction with continuous-time classical and
quantum walks; Mark Goldsmith, Guillermo García-Pérez, Joonas Malmi, Matteo A. C. Rossi, Harto
Saarinen, Sabrina Maniscalco; DOI:

11. [ortega_generalized_2022]: [2022] Generalized {Quantum} {Google} {PageRank}
{Algorithm} with {Arbitrary} {Phase} {Rotations}; Sergio A. Ortega, Miguel A. Martin-Delgado;
DOI:

12. [qiskit_quantum]: [] Quantum {Walk} {Search} {Algorithm}; Qiskit; DOI:
13. [portugal_quantum_2018]: [2018] Quantum {Walks} and {Search} {Algorithms}; Renato

Portugal; DOI:10.1007/978-3-319-97813-0
14. [friedman_quantum_2017]: [2017] Quantum walks: {The} first detected passage time

problem; H. Friedman, D. A. Kessler, E. Barkai; DOI:10.1103/PhysRevE.95.032141
15. [yin_restart_2022]: [2022] Restart expedites quantum walk hitting times; Ruoyu Yin, Eli

Barkai; DOI:
16. [bonomo_first_2021]: [2021] First passage under restart for discrete space and time:

{Application} to one-dimensional confined lattice random walks; Ofek Lauber Bonomo,
Arnab Pal; DOI:10.1103/PhysRevE.103.052129

17. [bezanson_julia_2017]: [2017] Julia: {A} {Fresh} {Approach} to {Numerical} {Computing};
Jeff Bezanson, Alan Edelman, Stefan Karpinski, Viral B. Shah; DOI:10.1137/141000671

18. [luo_yaojl_2020]: [2020] Yao.jl: {Extensible}, {Efficient} {Framework} for {Quantum}
{Algorithm} {Design}; Xiu-Zhe Luo, Jin-Guo Liu, Pan Zhang, Lei Wang; DOI:10.22331/q-2020-10-11-
341

19. [gawron_quantuminformationjljulia_2018]: [2018] {QuantumInformation}.jl—{A} {Julia}
package for numerical computation in quantum information theory; Piotr Gawron,
Dariusz Kurzyk, Łukasz Pawela; DOI:10.1371/journal.pone.0209358

20. [van_der_plas_fonspplutojl_2022]: [2022] fonsp/{Pluto}.jl: v0.19.16; Fons Van Der Plas, Michiel
Dral, Paul Berg, Παναγιώτης Γεωργακόπουλος, Rik Huijzer, Nicholas Bochenski, Alberto Mengali,
Benjamin Lungwitz, Connor Burns, Hirumal Priyashan, Jerry Ling, Eric Zhang, Felipe S. S. Schneider, Ian
Weaver, Rogerluo, Shuhei Kadowaki, Zihua Wu, Jelmar Gerritsen, Rok Novosel, Supanat, Zachary Moon,
Luis-Mueller, Michael Abbott, Nicholas Bauer, Patrick Bouffard, Satoshi Terasaki, Shashank Polasa, Jacob
S. Zelko; DOI:10.5281/ZENODO.7340569

21. [juliagraphics_luxorjl]: [] Luxor.jl - {Simple} drawings using vector graphics; {Cairo} "for
tourists!"; JuliaGraphics; DOI:

22. [sambrani_plutoreportjl]: [] {PlutoReport}.jl - {Make} awesome reports and talk slides in
{Pluto}!; Dhruva Sambrani; DOI:

https://doi.org/10.1109/TQE.2022.3151137
http://arxiv.org/abs/2205.14023
http://arxiv.org/abs/2208.11030
http://arxiv.org/abs/2209.13451
https://qiskit.org/textbook/ch-algorithms/quantum-walk-search-algorithm.html#4.-Quantum-walk-search-algorithm-
https://doi.org/10.1007/978-3-319-97813-0
https://doi.org/10.1103/PhysRevE.95.032141
http://arxiv.org/abs/2205.01974
https://doi.org/10.1103/PhysRevE.103.052129
https://doi.org/10.1137/141000671
https://doi.org/10.22331/q-2020-10-11-341
https://doi.org/10.1371/journal.pone.0209358
https://doi.org/10.5281/ZENODO.7340569
https://github.com/JuliaGraphics/Luxor.jl
https://github.com/DhruvaSambrani/PlutoReport.jl

